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1. INTRODUCTION

Characterization of K-functionals is an important aspect of the theory of
interpolation spaces. For the couple L, and W} (¢"), we found in [4] a new
kind of modulus of smoothness that is equivalent to the K-functional. This
has had many applications in approximation theory (sec {4, Part11]). In
particular, the K-functional is related to the characterization of the rate of
approximation given by different approximation processes. Earlier attempts
in this direction (see, e.g., [ 1, 2]) suggested the use of ordinary weighted
moduli of smoothness. However, as it has been shown, this is possible only
for p=oc (for p=oo see [3, p.322]). In the present work, we pursue
further this line of investigation. Being aware of counterexamples in [6]
which show that such equivalence is not possible for L,, 1 <p<x, we
show here that the characterization of the K-functional of a function f is
possible by some weighted ordinary modulus of smoothness of a related func-
tion (not f itself). In the last section we give several concrete applications.
This demonstrates how our theorems characterizing the K-functionals are
used to determine the rate of approximations for various approximation
processes.
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We now describe the problem and solution in more specific terms. The
K-functional between L,(a, b) and W/ (¢") (weighted Sobolev space with
weight ¢”) is given by

K. J(fi1),= inf (If—gl,+t 1eg"ll,) (1.1)

g e ACi

We proved in [4, Theorem 2.1.1] that, under suitable conditions on ¢
(cl. [4, Sect. 1.2]), the modulus of smoothness,

w,(f,1),= sup 4}, 11, (1.2)

O<h<t

is equivalent to the K-functional in (1.1), ie,,
K, (i), ~w, (/i 1), (t—0+) (1.3)

Note that in (1.2), the increment hA@(x) changes as x varics through
(a, b) while our aim here is to find another expression of smoothness (of a
related function) which is formed by constant increments (ie., for which
the “step weight” is 1) and which is still uscable to describe K, ,(f, t"),. We
shall show that this is possible under some natural assumptions. A com-
plete characterization of the important case when the K-functional satisfies

K, (f,t),=0(*) for t—0

will be given.

Section 2 contains the notations and our terminology. In Section 3, we
state our main results, the proofs of which will be given in Section 6.
Section 5 is devoted to some preliminaries to these proofs. In Section 4, we
discuss an example which shows that our theorems are sharp.

Finally, in the last section, we synthesize our results with earlier ones to
derive thcorems on polynomial and operator approximation. It should be
noted that these results, which are applications of the main theorems, are
of utmost importance here. They are particularly essential because of the
technical nature of the main theorems of this paper. On the one hand,
these applications show the generality and nontriviality of our results by
providing rather surprising equivalences betwcen approximation errors and
some (strangely related) smoothness conditions. On the other hand, the
failure of the above equivalences for L, with p>2 (while valid for p <2)
perhaps explains why these results were not discovered previously and
underlines the necessity of the new measure of smoothness given in [4]
that provides equivalences for all L, spaces in a uniform way.
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2. NOTATIONS AND TERMINOLOGY

The weight functions w on (a, b) R discussed in this paper are positive
measurable functions on the interval (¢, b) < R which arc bounded away
from zero and infinity on every compact subinterval of (a, b). Since, by
linear substitution, we can carry (a, b) into one of the intervals (0, 1),
{0, o), or (— ¢, oc), we can always assume that {a, b} is onc of these.

Let /' ~ g mean that 1/C < f/g < C for some constant C in the range con-
sidered. For example, “f(x)}~ g(») if x~ »” means that if 1/C<x/v<C.
then 1/C, < f(x)/g(3) < C, for some (.

We shall consider L, spaces and assume throughout the paper that

I<p<ac. (z.H

For a weight function ¢ and a positive integer r, the weighted Scboicv
space W (¢") is given by

W)= {f1f" VeACp, o' f"el,},

where /' Ve AC,,. means that f is (r-1)-times differentiable and its
(r—1)st derivative is locally absolutcly continuous; ie., it is absolutely
continuous on cvery compact subinterval of (a, ).

Even il we restrict our interest only to the K-functionals of the form
(1.1), in our considerations, weighted L, spaces inevitably appear (sec [4,
Chap. 6]). Therefore, we might as well introduce an additional weight w
and the weighted K-functional X, ,(/, 1").. , given by

Koolfs ) p= inf  (IW(f= g+ wgg ) (22)

g7 Ve ACe

The corresponding weighted analogue of (1.2) is defined in a slightly more
complicated way and we shall introduce it after having said something
about ¢ and w.

We will not give the exact general conditions on ¢ that ensure (1.3}
These can be found in [4, Sect. 1.27. For our purposes it is enough to make
the following natural assumptions. We assume that there exist two num-
bers B(a) and S(h) such that B(c) =0 if ¢ (where ¢ is equal to g or b)is a
finite endpoint of (g, &), and f(c) <1 if ¢ is infinite. We further assume that
when (a, b)=(0, 1), (0, ¢}, or (— >, ),

fox] e as x—-a+0 (a=0ora= —x)
o(x)~ { xP) as x—ox (h=w) (2.3)

(1 —x)F as x—1-0 (b=1)
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Since @ ~y implies K, ,~K, ,, we can assumec (and this is the second
assumption made throughout the paper, the first being (2.1)) that
@ e C'(a, b) and in certain neighbourhoods of a and b the equivalence “~7
becomes equality in (2.3). For example, if (a, b) = (0, c0), then we assume
that

e(x)=x"  for 0<x<l1
and
@(x) = xF=) for x>2.

To discuss the K-functional K, ,(f, "), ,, we will make the following
assumption about the weight w. There exist two numbers y(a) and 7y(b)
such that

c)=z0 if c¢(¢c=aorc=b)isa finite endpoint with 0 < B(c) < |

and
fx] 7 as x—-a+ (a=00ra= —w)
w(x)~{ x7=) as x—ow (b=o) (2.4)
(1—=xyM a5 x—o1— (b=1).

Note that y(c) is not restricted if ¢ is not finite or if 8(c) = 1. These assump-
tions are satisfied by most weight functions ¢ and w appearing in applica-
tions (see Section 7 below).

The symmetric rth difference is given by

Af)= 3 (=1)F <;>f(x+(rh/2)—kh)
k=0

and the forward rth difference by

r

B = 3 (=08 (}) St 0=

k=0

When the expression wd;  f appears in the norm L,(a, b), it will be
assumed that 4} /=0 if (x — rho(x)/2, x + rho(x)/2) € (a, b).

For simplicity, we define the weighted analogue of (1.2) only for (a, b) =
(0, cc). In this case, we overcome the difficulties near both finite and
infinite endpoints and, therefore, the corresponding definitions and proofs
for (a, b)=(0, 1) and (a, b) = (— o0, o0) should not cause any problem (cf.
[4, Sect. 6.1 and Appendix B] and the discussion at the end of the proof of



K-FUNCTIONALS AND WEIGHTED MODULI 7
Theorem 1). Thus, let (@, )= (0, oc) and when B(0)=1 or 7(0)=0, wz
simply write

Wi (fs )y, ,= sup wdj f1 .
O<h<yt

In the remaining case, that is, when 0 < $(0) <1 and 7(0) > 0, we define

(/. 1),.,= sup “W/j;,,,,f”l,,,(z'«.r_)'*' sup ”M"A;,[,;_f“L,,(().th')-.

O<h<t O« hsit
where (for t< 1)
¥ = (rr)0 PO, (2.5)
With these notations, we have [4, Theorem 6.1.1]
K ot o~y (f,D, (10} (2.

We will use the notation

[39)
(e
~

A<LB

extensively rather than the expression “there exists a constant ¢ such that
Al <c|Bl”

3. MaiN RESULTS

Let I'(x) be given by

)= o di
2 ()
and let
O=1"" (3.1)

be the inversc function of I. We observe that I maps (a, b) (where (a, b)
is =(0, 1), (0, «¢), or (—oc, 0 }) onto an interval (A4, B) and 6 maps (A, B)
onto (a, b). With this notation, we will prove the following result.

THEOREM 1. Assume | < p < xc and

)+ (1 =r)(1=B(c))> —1/p if c(c=aarc="b)
is a finite endpoint of (a, by with0 < f(c)< 1. (3.2)

For F= <0 where 6 is defined by (3.1), both

OUE, Dwiong.one.p LOGU ), + 7 I0f 1, (3.3)
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and
O Dy SOUE, O yoe oy p T 1 1 (wo )@ 8) 7 Fl,  (34)
hold.

This gives the type of comparison mentioned in the Introduction since in
the definition of w/(f, )y, ,, the increment 4 is constant; i.c., the “step
weight” is identically equal to 1, wj(F. 1), , is an ordinary weighted
modulus of smoothness.

Remarks. 1. Note that wi(f.t),, is defined on (a,b) while
O F, 1) . oy0-6yis, » 18 defined on (A4, B).

2. The result holds for many other s and @’s as well. For example,
if (a, h)=(0, cc) and 6: (0, oc) = (0, oc) satisfies e C'(0, oc), §' ~ -0,
and for 1 €i<r

9 (x)<0(x)-x ",

then this 8 can replace the 0 given in (3.1).

3. Note also that if y is a linear mapping betwcen (4, B) and (4, B),
then Theorem 1 holds for 0 if and only if it is true for @ =00y (cf. (2.6)).

We shall use thesc remarks in the proofs and in our applications.

As the value of r becomes larger, the condition (3.2} becomes more
severc. Therefore, it is important to give comparisons under the following
less restrictive assumptions.

THROREM 2. Suppose 1 < p< oo, F=f<0,0<s<r for the integers s and
r, and

+H)+ A =r)A=Be))> ~ljp if clc=aorc=b)
is a finite endpoint with0 < B(c) < 1. (3.5)

Then the assumption
)= [ (W (f; ) pu* ™) da < 0 (3.6)
implies f© Ve AC,,. and

atl
w’I(F’ t)(w‘ e -0yl p < t'r JO ((U:o(./; u)va/uf*' l) du

+U(S) + hwf ) (3.7)
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Contersely (where (3.5) still holds), the assumption

at

)=

i :
(OVF Uy arg oy 10 it Ydu<

implies F“*~Ye AC,,. and
~t .
K (T ;s
WL (f, D, p <1 |) (W (F U)o coyio orr-re pit ™ Y
“(

+ U (F)+ e O) = 0) T FI), (3.8}
Observe that we have

rl

ot
e (@ (fu) et Y du> | Wt Ndus
0 J0

1e.. the first term on the right of (3.7) or (3.8) is the signiflicant term. Wc¢
also mention that for s=r—1, (3.5) is always valid.
Finally, we turn to the characterization of

Wl (f, )., = C(17)

and, hence. that of K, (/. 1), ,=C{1%).

THFOREM 3. Suppose 1 < p<oc, wfel (a b), 0<ua<r, ands=[a] if «
is not an integer and s =x— 1 if it is. Then for F*'= [0,
W, (f, 1), =C(17) (3.9)
implies that f© Ve AC\,. and

w'(F, f)(w (g (7}""’,;7:(('(11)' (3.10)

Conversely, for f=F<0 ', (3.10) implies that F* "¢ AC\, and for {*' =
EFW-0" " (3.9) holds.

COROLLARY 1. Under the assumptions of Theorem 3
KI.(/)(./; ,)w, P = C((ta)

and (3.10) are equivalent.

4. AN ExamprrLe

In this section, we show that the results in the preceding one arc sharp.
First of all, noticc that the term " |wf ||, on the right of (3.3) is necded
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even if its order of magnitude is usually smaller than that of w(/, 1), ,. In
fact, if f'is a polynomial of degree at most (r — 1), then w/(f, 1),. , =0 while

w(f<0,0)y ,20 for r>1.

Recall that for any f which is not a polynomial of degree at most r — 1 and
for any weight function W,

im inf w (f, t),.,/t">0
t-+0+

(cf. [4, Sect. 4.27] or (2.6)).
With regard to the range of parameters in Theorem 1, we have:

ASSERTION 1. Suppose 0< <1, o(x)=x", w(x)=x", 720, 1< p< s,
and

7+ (1=r)(1=p)< —1/p, (4.1)
(i.e., assume that (3.2) does not hold). Then the conclusion of Theorem 1 fails.

Proof. Let fe C’(0, oc) such that

Lo =gy xtFlogx—x' P if 0<x<1
ﬂx)‘{o it x>2.

We can choose (see Remark 3 of Section 3)

Fx)=(1-p)| uPdu=x'"

0

and
O(x) = x"- 5
Then
(feD)x)=xlog x—x
and

(f0) (x)=log x.

Hence, we can write (sce also [4, Sects. 3.4 and 8.5] and (5.7) below)
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w;(/A 0, ’)(w/ Nig: 0)'7. p

al ‘/p
.w'{ I(w=>0)(u)((<p'~>6)(u))””(f-'())"’(u)l”du}

vre

al Lip
~ 1t {l ul(> + Bip) (1 - B+ 1 -r)p dul

vre )
1" log ¢} 'F if equality holds in (4.1)
(e pl- B4 strict inequality holds in (4.1).

On the other hand,

rl Lip
WL (fs e p~ l'{‘( - [w(u) w'(u)f"’(uﬂ"du}
“rr) (-
al \l iip
~1’{ A

«(”)ln—ﬂy

" jlog 1]t P if equality holds in (4.1)

i G U B g | if inequality holds in (4.1).

These two moduli have different orders. |

5. PRELIMINARIES TO THE PROOFS
We first quote from [4, Theorem 6.11] the following result.

THEOREM A. Ler @, w, p, and r satisfy (2.3), (2.4), and (3.2). Then

K. ,~0(fiD, (—20+) (5.1}
It will be important to obscrve:

THEOREM B. The equivalence (S.1) is also valid if (a,b)=(—x, x),
e=1, and

w(x) = W(e*), (5.2)

where W is a weight function satisfying condition (2.4} on (0, o).

Since (5.2) implies that w{x)~w(y) if x— y~1 when x> toc, the
proof of Theorem B is an easy modification of the proof of Theorem A
in {4].

Notc that (5.1) implies that if ¢ ~y, then w,(f. 1), ,~w,(f. ). -
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In the proofs of Theorems 1-3, we shall need the concept of (weighted)
main-part moduli. To avoid unnecessary complications, let us consider
only the case (a, ) =(0, oo ) as (a, &) =(0, 1) can be handled similarly (see
[4, Sect. 6.2 and Appendix B]) and as for (a, b} = (— o0, 00 ), the main-part
moduli and the moduli defined above coincide.

It f(0)= 1, we write

Qs D, =0n(fi ), = sup wdi, fl,.

O<h<r
In the remaining case, 0 < f(0) <1, we write

Q;(f; I)w.pz Sup iiWA;lwf'iil.,,(h'.oc)’ (53)

O<hs<gt

where h* = (rh)V!! -#O) (see (2.5)). Thus, Q and w differ only for f(0) <1
and the difference in their definition is that in the cxpression of 2, we avoid
a small neighbourhood of 0. Let us mention that the cases £(0)>1 and
f#(0) < 1 are different because 5(0)= 1 implies

(x —rho(x)/2, x + rho(x)/2) € (0, c0)

for small A and every x >0, while for 0 < f5(0) < I, this is truc only if

= (1/'2)1/(1”/1) (rh)‘/“ A (1/2)!/(1_;;; h*.

The corresponding main-part K-functional is given by
‘Z/;_gp(f; I,)w,p = Kr,a)(.fv lr)w,p
if f(0)=1 and

v ANGA ’,)n.p = sup inf { iw(f — gl Lpth*. x0) + A" W(orgmil I,p(h“uo)}

O<hse g Ve AC,

when 0 < B(0) < 1.
fn {4, Theorem 6.2.17, we proved

Kol s 1)~ 2, D, (120). (54)

Using this equivalence, we derived in [4, Sects. 6.2-6.4] many properties of
£2 which display complete analogy with ordinary moduli of smoothness, for
example (see [4, Theorem 6.2.51),

QU NS Oy <Q0(S s (5.5)
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and for 7> 1 (see [4, (6.2.8)]).
QU )y KA D e

The converse of (5.5) is the Marchaud-type inequality [4, Theorem 6.4.27,
~l
Qf 1), <1 (1 (1 )y /Y it 4 | ) (56)

In [4], we considered more general weights than the ones above and
(5.6) was proved under the assumption that

we)+rflc)> —Lip

if ¢ (c=a or ¢=h) is a finite endpoint with 0 < fi(c) < oc, but as y(c) =0,
this is always true in the case dealt with here.
Finally, the moduli @ and Q are connected by [4, Theorem 6.2.2]

Qs Dy KDL D < | (RS, 1), ) (5.7)

Y0
In particular, for o >0,
WL (fs e = OV = Q20 1), = C(7). (5.8)

In the next section, the following lemmas will be used extensively.

LEMMA 1. Suppose W is a weight function on an interval (¢, d), 0 < ¢ <
2e<d, and W(x)~ W(y)if x~ y. Then for 0<i<r,

I () x'g DO ey < ATW(X) 8O ey + LW () xg 7 (x) Lyte.dyr
Proof. 'We make usc of the inequality [3, p. 310]
Hgm” L,,(l)< ViR gt Lnt )y ;!g(’)li Loty {5.9)

where [ denotes an arbitrary interval. We can decompose (¢, d) into
disjoint intervals 1, = (&,, n,) with 1< (n, — &, )/¢, <4 for every k. Then
(5.9) implies
EW(x) x'g (X)) Loy S WIE) 7 g0
<SWPEN NN+ WHED L™ 18 M7
<IWEN T o + 1 WI(X) x"g XN gy

Summing these up for all & and taking the pth root, we obtain the state-
ment of the lemma. |

640-63:1-2
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LeMMma 2. If W is a weight function on an interval (¢, d), d=zc+1, and
W(x)~ W(y) when x — y~ 1, then for 0<i<r,

IWe ety <UWE ety + UWE N Ly

Proof. The proof coincides with the preceding one if we divide (¢, d)
into intervals {7,} of length between 1 and 2. |

LEMMA 3. Suppose 0<c<1 and g(x)=0 for x=1. Then, under the
assumptions

p>—1/p, (5.10)

and g Ve AC,,., we have for 1 <i<r,

'tlx”g“’ll Ly(c,1) L lxP v ig"’ll Lple,1) (5.11)

uniformly in c.

Proof. Tt is enough to prove the statement for i=0 and r =1, since the
general case follows from it by iteration.
Our assumptions imply that

o

gx)=—{ &) du

Applying Hardy’s inequality (see [5, p. 273 ])—and this is where we need
(5.10)--to the function

gr(x)=—| g'(uxle, 1) du,

X

where y(c, 1) is the characteristic function of the interval (c, 1), we have

“ngnl.,,(c‘l) = |Ix"g*| Len S e+ (g*)l La(0.c)

pp+1

14 '
:pp+] (B3 & PIFTO |

Lemma 4. If

1
[ @of 00 di <z,
0
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then f© Ve AC,,.,
!
QS D < L (Qu(f ), /w1 du (5.12)

and

1
A AV NRER P A (513)

Proof. The first assertion of the lemma and (5.12) is the content of [4,
Theorem 6.3.1]. f¢~ Ve AC,,. now implies

lim 4,0 /()= @*(x) f'(x) (ae.)
and, therefore, using Fatou’s lemma we have

Il <lim inf 24/, ),.,./¢ (5.14)

According to (5.6),

1
Qs ) /| (LS u) i+ Y du+ S,

vr
The iteration of this yields
{1

24(f upit <] |

”
1

(Q;(fv u)w,p/;’ur) du dlr--.c A1 'dtl + ”W/ ‘ip
n i P

el
<<J’ (Q20,(f u), p 1"+ Y du+ fnf 1,

which, together with (5.14), proves (5.13). |}

6. PROOFS OF THEOREMS 1--3

Proof of Theorem 1. We carry out the proof first for the case
(a, b) = (0, oc), because in this case we must deal with the difficulties
caused by both finite and infinite endpoints. The other cases, that is,
{a, b)=(0, 1) and (a, b) = (— o0, o), will be handled similarly at the end of
the proof.

Thus, let (a, b)=(0, o). We may assume that

o(x) = x* on (0, 1)
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and
p(x)=xP=) on (2, ).

Let ¥, Y, € C’(0, oc) be monotone functions such that

1 if x<1/2
‘/”(X)‘{o it x>3/4
and
0 f x<3
‘/’2“):{1 if x>4.
We write

S=/+ A=y ) =)+ =1+ L+ fa

1t follows easily from Theorems A and B, given in Section 4, and from (5.9)
that

WL (fis Do p RO D o+ 171 s
and for F;= f;-#8,
O (Fis O 0300200, p S OUE U0y 017,

+ 1 (we0)@-0)'7 F,.

Therefore, it is sufficient to prove Theorem [ separately for f,, f5, and f3.
It will be easiest to prove (3.3) and (3.4) of Theorem 1 for f, because the
support of f, lies in [1/2,4]. In fact, by the proof of Theorem A or by
Theorem A and (5.9), there exists, for every 0 < ¢ < 1, a function g such that
supp g<(1/4, 5) and

Iw(fa~ g, + 1" w8l g < (f2, D), - (6.1)

Making use of the substitution x=68(u) and the formula ' =¢c8 (cf.
(3.1)), we have

Hwe0)(@c0)'” (fr08—go0), 0, (f2, D (62)

As the functions f, and g vanish outside (1/4, 5), we will be interested in
the interval (8!(1/4), 8~ '(5)). On (6~ '(1/4), 0~ '(5)), we have

wo8<C, 109N <C, 1<igr,
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with some constant C. Furthermore, (g-6)""" is the linear combination of
terms of the form (g'”-4) 0% ... 0% which satisfy

1(g<0) 6.0, < g B,
Lemma 2 now implies

Hw=0)(@o0)'" (g=0)"i,

<il(g-0)i, <Y iIg"-61,

i=1

<Y gV, <ig™i, +igh,

i=1
< weg™l , + w(fo— g)i, + Iufal. (6.3)

The last step of (6.3) follows from the fact that w and ¢ are bounded away
from zero on (1/4, 5) and hence, on the support of g and f.. The relations
(6.2) and (6.3) imply via Theorem A and (6.1) that (3.3) is valid for /. The
inequality (3.4) for f, can be demonstrated similarly.

The proof of {3.3) and (3.4) for f, and f; requires more sophisticated
arguments. Let us begin with f,.

Proof of Theorem 1 for f,. We write f=/f, and thus suppose that
f{x)=0 for x=3/4. First we will show that for every >0, there is a
function g = g, such that g vanishes on (4/5, o«c) and

w(f =g, + 17 iwe'g”ll, @y, ). p- (6.4)

In fact without the requirement that g vanishes on (4/5, cc), (6.4) follows
from Theorem A of Section 5 and from the definition of the K-functional
K, ,(f, t")., ,- Butif (6.4) is valid for some g (not necessarily supported on
[0, 4/57) which we call g, we can show that it is also valid with g= g, ¢
where Y eC>*(0, ), Y(x)=1 for xe(0,3/4], and yY(x)=0 for
x e [4/5, o) (4/5 rather than 1 is chosen to suit the case (0, 1) to be proven
later as well as the present case). While the estimate of |w(f— g)I by
aw(f — g, )l 1s easy, we have to use (5.9) to obtain the estimate of
two'gl 1,034,475] by ilwp'gll 1,03:4,4;5] and ilwg, | Lp[34.455] (Clearly
b “'(P’gmHL,,(o,Jx«t] = ||W(P’g§:)‘| L,(0,3:4] and fiwe'g"| 1,048, 0) = 0.)

The estimate (6.4) immediately implies

f{weB)O) P (foO—go O, WL, - (6.5)
If we can show that

(w2000 (g0) 71, < Iwgg" , + gl (66)
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the estimate (3.3) will follow from (6.4)-(6.6), Theorems A and B, and
0" =¢@-=0.

Also, for every 1>0, there exists G=G, such that G vanishes on
6-'(1, oc) and

{(we8)@=6)'7(f=0-—G),+1t f(wel)e:0)" G,
<@S 0, 1) gy0-0ytr. p-
To prove (3.4), which is the converse of (3.3), it is sufficient to show that
Iwe'(G=0"")"), <ll(w=0)@-8)"” G|,
+1(we0)(@-0)"" G|, (6.7)

Thus, it remains to prove only (6.6) and (6.7). We will prove {6.6) and
(6.7) for the cases 0 < f(0) < 1, B(0)=1, and S(0) > 1 separately. Note that
we assume @(x) = x?® on (0, 1).

Case . 0<p(0)<1. We set f=p(0)and hence, ¢(x)=x* on [0, 1].
The endpoint A (where 0 maps (A, B) onto (0, o), cf. Section 3} is finite,
and by linear substitution (see Remark 3 in Section 3), we can assume that

Nx)y=x'"’  fx)=x"""P=x° and (4, B)=(0, x).
Therefore, the expression
(g« O) )" = (gla’ N
is the linear combination of terms of the type
g u® T, 1<igr
Hence, to prove (6.6), we have to estimate
li(wo 0)(u)(6'(u))'? g B(u)) u? "),

for 1 <i<r, which, making use of the change of variable x = ¢(u), u=x'"#
becomes

I={iw(x) g"(x) x' =" Dy . (6.8)

Since w(x)~ x"® on (0, 1), Lemma 3 and the condition

y(0)+i—r(1 - $(0)) > ~;?, (6.9)
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which is valid if we assume (3.2), yield
() €000) 7  I L < (x) P (x)1 s

and this proves (6.6).
We will prove (6.7) in a similar way. The expression

(G-6'(x)" = (G(x" "))
consists of terms such as
GO Byx e, 1<i<r,
and hence, we have to estimate for 1 <i<r, the expression
J = w(x) XG0y
=1 (we0)@)(0' ()" GO '™ " . (6.10)
Since

()N ()7 ~ OV P10

Lemma 3 implics that if

7(0) B(0) i

+ +i—r>—-— for 1<i<gr, (6.11)

F=p0) (1-pONp P

then
J<iiwo0)(0)' 7 Gy,

1c., (6.7) is valid. The assumption (6.11) for =1 is actually stroenger than
(6.11) for i>1 and for i=1, it is exactly (3.2).

Thus the proof of (6.6) and (6.7) for f, is completc in the case
0<p(0)< 1.

Case 1I:  B(0)=1. In this case, we can choose

LAY
/

I'(x)= | %uzlog X, Ax)=¢"

vl
and we have (4, B)=(~cc, oc). The cxpression
(g(0(u)))'"7 = (g(e*)"”
consists of terms like

ge"y ™ for 1</gr
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Hence, we have to show
f(we 9)(9’)”‘7 g“’(@) 0[” Lol -, )™ Tw(x) X’g(”(X)!l 150, w0}
< flwlx) xg"(x)l, + lwgll,

which follows from Lemma 1 of Section 5. This proves (6.6). For the proof
of (6.7), we observe that

(G(log x))™”
consists of terms such as
Glog x)x ", 1<i<r.
We can now apply Lemma 2 of Section 5 to obtain
Iw(x) x'G"(log x) x "I, = liw(e*) e*"G(u)},
<Jw(e*) e“? G )l , + liw(e") e“PGlu)lj,
which implies (6.7).

Case 111:  f=p(0)>1. For > 1, we have (4, B)=(—oc, oc) and we
can choose

I'ix)= —x' -8 G(x)___(_x)l,"(l- .

In this case, the consideration is very similar to that of Case I above. There
are only two differences. The first one is that because of

—r(1—B)>0,

we can apply Lemma 1 instead of Lemma 3 and so we neced no extra
assumption in the proof of (6.6). The second one is that the norm in J,
given by (6.10), is actually a norm on (—o0, —1) (note that supp GE
6~ '((0, 1)) = (— 20, —1)), hence, we can apply Lemma 1 (more precisely
its (— oc, 0)-variant) to conclude

J< N (w=0)(0)'7 GV, + (we0)(0")'" G,

and here, again, we do not need any assumption on the parameters ¥(0),
r, and B(0)> 1.

Cases I-111 prove Theorem 1 for f= f,.

Finally, we verify Theorem 1 for f.

Proof of Theorem | for fy. Let f=f;. Then supp f< (3. ) and
p(x)=x", f=B(c)<1 on (2. w).
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We follow the consideration used in the proof for f,. The functions g and
G in this case can be chosen in such a way that

supp g (2, o) and supp G< 0 (2, ).
We have to prove again (6.6) and (6.7). We distinguish two cases.
Case IV: B=p(x)=1. We can choose
]“(x)——-J‘lX%uzlog X, Olx)=e"
and the proof coincides with that of Case IT above.

Case V: f=f(cc)<1. We can choose
1‘(X)=x‘ -/)" 0(’\.)__:/‘,1.11 )

and follow the proof of Cases I and I1I above. Since in this case, both in
(6.8) and in {6.10), the support of the function is contained in (1, o), we
can apply Lemma 1 of Section 5 in estimating / from (6.8) and J from
(6.10) to obtain

1< {we g, + lwgl,
and
J<(w=0)0)"7 G|, + 10w 0)(0)'7 G,

and this completes the proof, when (a, )= (0, o).
Let now (g, b)=(0, 1). We use the function ¥, from the preceding part
of the proof and set

Uif x>172

11/3(x)zx//,(1—X)={0 it x<1/4.

We can now write

I=0+ A=y ) U=)+ fls=fi+ it fr

The estimates for f, and f; are the same as in the proof for the case (0, oc ).
(Note that f, has support in [1/4, 3/4] and /| has support in {0, 3/4].)

Finally, the estimate of f; is parallel to that of f,. (Notc that the support
of f, is contained in (1/4,1].) To show this we just replace x by (1 —x).
An altcrnative way is to use the substitution w=1-x, Ww(u)=w(x),
f(u)= f(x). Then in the decomposition

T=f+ U=y Y=+ f=fi+ 2+ f3,
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£, (u) coincides with f,(x), and so the proof applied to / and f, rather than
to fand f, yields the necessary estimates for f.
Finally, the case (a, b) = (— co, oc) is similar if we use the decomposition

S=/+ A=y U=y + f,=f1+ it f

where supp f; < (— o0, 3/4), supp f,£[1/2,4], supp f35[3,oc) and in
this case the proof for f| and f; will be parallel to the proof for f; in the
case (g, b)=(0, oc). The proof for f, is exactly the same as in the case
(@ b)=(0, ). |

Proof of Theorem 2. Assuming (3.6), we know that f©~ 7 is locally
absolutely continuous and

Q) Dy | (@(fr w0 ") (6.12)

from Lemma 4. By slightly modifying the proof of Theorem 1, we can show
that it holds for the main part moduli as well. (Here (5.4) should be used
instead of Theorems A and B.) Therefore, assuming (3.5), we have

QU0 0, D w60+ 1, p <Q:o--‘(f(.n’ Dy p 1777 HW(P“f(’)H,,-

(See also [4, Sect. 6.2] about the freedom we have in choosing A* in (2.5).)
By [4, Theorem 6.3.1(b)]}, we have

QUE, D eoyoeoy 19, <UD C(FY, D o)0- 00 1, p- (6.13)

Furthermore, (5.7) yields
W(F, )., < | (2(F, u)w, ,/u) du.
0
Combining the above, we have

i au
(U;(f‘. ’)(w"())(wu())x‘l/l"p <J~ u -’ ! ‘ (a);(fa v)w‘pl/vj" 1) dv du
0 0

at

+J u ! jwe® @, du
0

< IV‘{O ((U;(_f; U)“‘p/vs-}- l) dt)'f‘ f, Hw(p?.f(x)“p.

The relation (3.7) now follows from (5.13) and thc above. We omit the
proof of (3.8) as it is very similar. |
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Proof of Theorem 3. According to (5.5) and (5.6),

QML Dw p<QUL Dy
and
Qfit), <t (f Q0 (fou), i ™ 1) du+ liwf ,,),
Hence, wf e L, and
QS 1), , =0
imply
Q2 D=1,

Making use of Lemma 4 (of Section 5), we can derive

QS 1) = C(1* ), (6.14)

where s satisfies 0 <2 — s < 1. Thus, if we can show for 0 < p <1 that

QLS D =) (6.15)

1s equivalent to
QU 0, 1) 0y e, = C(17) (6.16)

whenever wf e L,, we will apply this cquivalence to the function /™' (rather
than f) and the weight function we¢® (rather than w) with p=2—3s io
obtain

2 (s .
QUF™, ) eoayoay1n., = C(17).

We now use (6.14), (5.8). and (6.13) to derive (3.10). The verification that
{3.10) implies (3.9) is identical, we just have to reverse our steps.

Thus, it remains to prove that (6.15) and (6.16) are equivalent. For
fi{c)=1 when ¢ (¢=a or ¢=bh) 1s a finite endpoint, 2= and the
equivalence of (6.15) and (6.16) follows from Theorem 1.

When 0<f(c)<1 we can no longer apply Theorem 1 to verify that
{(6.15) and (6.16) are equivalent, since in Theorem 3 we do not have the
assumption (3.2) of Theorem 1. In this case more delicate consideration is
needed.
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Suppose that at some finite endpoint ¢ we have 0 < f(c) < {. For sim-
plicity, we set (a, 5) = (0, o) and 0 < = f(0) < 1. (The case (a, b)=(0, 1)
with (0)< 1 or B(1)< 1 can be treated similarly.)

We now follow the proof of Case I of Theorem 1.

Thus, we may suppose that f(x)=0 on (3/4, ), ¢(x)=x", 0<f=
BO)<t on (0,1), I'(x)=x'"# and O(x)=x"1"# We can choose func-
tions g and G such that supp g< (0, 1), supp G= (0, 1),

IW(f = @l Le.00) + £ MWO " 1y m 00) QR4S 1),
(with %= (20 M) and
“(WO 0)(¢ ’ O)l/P (fo 8 - G)H Lp(2t.00) + 12 H(W e 6)((p @ 0} Ve G”“ Lp(2t,0c)
LS 0, D a0y 0y,

Following the proof of Theorem 1, it is enough to show that for p <1,

1wl 1o 0y €17 72 (6.17)
implies
IW(x) @2(x) &' (X)X 100/ o0y <177 2 (6.18)
and
1w e 0)(@0)? G"ll 12 ) < 2”72 (6.19)
implies
I(we D)@ - 0))'™? G (1)Ul 121,00, <177 2. (6.20)

To prove thesc implications, we need the following lemma.

LeMMa 5. Suppose
y—1+1/p+(2—p)é>0, >0, p<2. (6.21)
Then

lip
{( 6Ix’g"(x)|”dX} <€TE (=04 (622)
“(2r)
implies for g, g’ € AC,,. with supp g <(0, 1), that

/p
{J(2 ¥ |Xy_ lg,(X)lpdx} < ’ ([ﬂ0+ )
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Assuming Lemma 5, the implication (6.17) = (6.18) follows from

W(X) (p2(x) ~ x;z(()) + 2/1”

where 7(0) >0, t* = (2¢)"" ~#, and

(O +28)y =1+ 1/p+(2—p)/(1/(1=B))228—1+1p+ (1 -5)>0

because p < 1.
Similarly, the implication (6.19) = (6.20) follows from Lemma 5 since

(we 0()) @ = ()7 ~ 7@ Fipra B

and for p< 1, »(0) =20,

GO)+B/p)/ (1 =B —1+1p+(2~-p)1>0. |
Proof of Lemma 5. The relation (6.22) implies that

. Ip _
{' [x-,-g//(x)lp dx} <[(;) - 2)é
and therefore, using Holder’s inequality, we have

2 ) 021 Lp
[t desor {7 ax|

2s e
YRRt {[ |xfg"(x)|? dx}

<[- vy l-Lpt(p- 2J,'(5'

Adding these together for ¢, 21. 44, ... and utilizing the fact that the exponent
—v+1~1/p+ (p~2)/d is negative (which follows from (6.21)), we obtain
1
Fl<] 1g )i degr 70 e e

£

Hence,

-~

ol Lp ~1 ) 1ip
(I worad " <{] wo v ad e

j(::ﬁ Y2y

which completes the proof. |
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7. APPLICATIONS

In this section, we apply our results to some problems in approximation
theory.

Let ¢ > 0, and s be an integer such that s <« <s+ 1. In the course of the
proof of Theorem 3, we verified the following proposition.

PrOPOSITION.  For O<a<r,
'qu)(./7 I)w,p = f‘([“)©Qf(/‘(:) o 9, l)(w'~0)(q>'-0)“-' L, p = (/r,-(ta A) (7] )

We shall use this equivalence relation in our first application. Let us
mention that the proof of (7.1) given above actually works for p= 00 as
well (unlike the proofs of Theorems 1 and 2) if f(¢)>0 when ¢ (¢=a or
¢=1"b) is a finite endpoint.

Note furthermore, that we have a certain freedom in choosing 8 (sec
Remarks 2 and 3 in Section 3).

1. Suppose (g4, b)=(—1, 1), w(x)=(1+x)" (1 —x)"? with 3,20 (wis
a Jacobi weight), and
Ef)vp= inf (w(/ =Pl 1)

deg Pp<n

is the best approximation of f by (algebraic) polynomials of degrec at most
n. 1t was shown in {4, Corollary 8227 that for O <a <,

EAf ) p=Cln" ") = Q0] 0., = O(1%)

with @(x)=./1~— x% Hence, we obtain from the Proposition given above:

THEOREM 4. Suppose | < p<co, a>0, and s is an integer satisfying
s<a<s+ 1. Then

E(f)y.,=0n %)

if and only if f*~ Ve AC,,, and

; 2y +s+ p 272 ¢s+ lip B
i{(cos ;) (sin g) 42 £ (cos x) =O(h* °).

“ Lp(2h.7- 2h)

Here and in the sequel, differentiation has priority over substitution and
substitution has priority over forming sccond difference, e.g., A% 1) (cos x)
denotes the second difference of the function ¢ cos at x.

The proof of Theorem 3 shows that Theorem 4 is actually true for 7y,
¥o> —1/p when 1 < p< oc.



K-FUNCTIONALS AND WEIGHTED MODULLI 27

2. Let (a,6)=(0, %), @(x)=1/x, and w(z)=x"(1+x)" where
0<y, <1 —1/p. The Szasz- Kantorovich operators are¢ defined by

x k4 L)in k
SHxy= 3% (n JI\M ! flu) du)e '"‘m.

k=0 k!
In {4, Theorem 10.1.3], we proved that for 1 < p< o and O<ax < 1,
i)w‘(S:,kf—f)h L,,,((), .‘1:)=C\(n 1) (72)
if and only if
QA1) = C(17). (7.3}

We may now use the Q2-version of Theorem | (cf. the proof of Theorem 3)
or (5.7) to obtain the following result.

TueoreM 5. If 12—-1/p<y, <l —=1/p and Q<a<!l, then (7.2) is
equivalent to

B (L x2)2 x4 f(P) ) oy = C(RP).
One can observe that (7.2) and (7.3) are equivalent even if we assume
only y,> —1/p, and then the proof of Thecorem 3 shows the validity of

Theorem 5 even if 1,2~ 1/p<y,.
For example, if 0 <x <1 and p <2, then

WSS =V pp0.0)=Cln %) (7.4)
if and only if
Ux! P45 FOPN L an ) = G, {7.5)

It is remarkable that the example of Section 4 shows that (7.4) and (7.5)
are not equivalent (for some x) when p> 2 (cf. (7.2}-(7.3)).

3. The Baskakov-Kantorovich operators are given by

Vi)=Y <n 1“7 du)(”k_ l) H4x) 7E (k300

k=0 vkin K

The corresponding quantities are (a, b)=(0, ) and @(x}=/x(1+x}.
The results of this paper and [4, Theorem 10.1.3] imply for p <2 and
0<ax<1, that

WVrxf—si L0, %) = C(n )
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if and only if (sec also Remark 2 in Section 3)

llx*PexP 47 f(x?e*) Lp(2h, ) = G(h*).

Using Section 4, we note that the above is not valid (for some a) when
p>2.

4, Finally, let us consider (¢, b)=(0,), ¢@x)=x, w(x)=
xM(1 + x)"2, where — oo <7,, ¥, < o, and 1 < p < oo. These are connected
with the Post-Widder inversion formula for the Laplace transform or with
the closely related Gamma operators given by

ntl o0
G, f(x) = Jo e “uf (g) du.

n!

For any 0<a <1 and 1< p<oc, we proved in [4, Theorem 10.1.47 that

WG f = N 1j0,0)= Cn "% = 0% (f, 1)y, = G(17).
Theorem 1 now implies:

THEOREM 6. For every 0 <a <1 and 1< p < o0,
Iw(Gpf = i 0,00y = C(n 77)

if and only if
e (1 +e*)? &P A} f(e* )l Ly - e, ) = C(R**).
We can look upon Theorem 6 as a constructive characterization of
weighted Lipschitz spaces with weights

wi(x)=e* +e™, p,telR

Many other applications can be given in connection with combinations
of operators (see [4, Chap. 97) but we do not wish to get into details.
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